Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Saudi Med J ; 44(1): 67-73, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2310992

ABSTRACT

OBJECTIVES: To describe the effect of diabetes mellitus (DM) on clinical outcomes of patients admitted with COVID-19 infection. METHODS: We carried out a single center, observational, retrospective study. We included adult patients with laboratory-confirmed diagnosis of COVID-19 admitted to a tertiary hospital in Jeddah, Saudi Arabia, from April 2020 to December 2020. Electronic medical records were reviewed for demographics, clinical status, hospital course, and outcome; and they were compared between the patients with or without DM. RESULTS: Out of 198 patients included in the study, 86 (43.4%) were diabetic and 112 (56.5%) were non-diabetic. Majority of the patients were males 139 (70.2%) with a mean age of 54.14±14.89 years. In-hospital mortality rate was higher in diabetic patients than in non-diabetic patients (40 vs. 32; p=0.011). The most common comorbidity was hypertension (n=95, 48%) followed by ischemic heart disease (n=35, 17.7%), chronic kidney disease (n=17, 9.6%), and bronchial asthma (n=10, 5.1%). CONCLUSION: The risk of SARS-CoV-2 infection is higher among diabetic patients; particularly, those with preexisting co-morbidities or geriatric patients. Diabetic patients are prone to a severe clinical course of COVID-19 and a significantly higher mortality rate.


Subject(s)
COVID-19 , Diabetes Mellitus , Adult , Aged , Female , Humans , Male , Middle Aged , Comorbidity , Diabetes Mellitus/epidemiology , Morbidity , Retrospective Studies , SARS-CoV-2
2.
Journal of infection and public health ; 2023.
Article in English | EuropePMC | ID: covidwho-2287706

ABSTRACT

Background Infection with SARS-CoV-2 may perturb normal microbiota, leading to secondary infections that can complicate the viral disease. The aim of this study was to probe the alteration of nasopharyngeal (NP) microbiota in the context of SARS-CoV-2 infection and obesity and to identify other respiratory pathogens among COVID-19 cases that may affect patients' health. Methods A total of 107 NP swabs, including 22 from control subjects and 85 from COVID-19 patients, were processed for 16 S amplicon sequencing. The respiratory pathogens causing secondary infections were identified by RT-PCR assay, using a kit that contained specific primers and probes combinations to amplify 33 known respiratory pathogens. Results No significant (p>0.05) difference was observed in the alpha and beta diversity analysis, but specific taxa differed significantly between the control and COVID-19 patient groups. Genera of Sphingomonas, Kurthia, Microbacterium, Methylobacterium, Brevibacillus, Bacillus, Acinetobacter, Lactococcus, and Haemophilus was significantly abundant (p<0.05) in COVID-19 patients compared with a healthy control group. Staphylococcus was found in relatively high abundance (35.7%) in the COVID-19 patient groups, mainly those treated with antibiotics. A relatively high percentage of Streptococcus was detected in COVID-19 patient groups with obesity or other comorbidities. Respiratory pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Salmonella species, along with Pneumocystis jirovecii fungal species were detected by RT-PCR mainly in the COVID-19 patients. Klebsiella pneumoniae was commonly found in most of the samples from the control and COVID-19 patients. Four COVID-19 patients had viral coinfections with human adenovirus, human rhinovirus, enterovirus, and human parainfluenza virus 1. Conclusions Overall, no substantial difference was observed in the predominant NP bacterial community, but specific taxa were significantly changed between the healthy control and COVID-19 patients. Comparatively, an increased number of respiratory pathogens were identified in COVID-19 patients, and NP colonization by K. pneumoniae was probably occurring in the local population.

3.
J Infect Public Health ; 16(5): 680-688, 2023 May.
Article in English | MEDLINE | ID: covidwho-2287707

ABSTRACT

BACKGROUND: Infection with SARS-CoV-2 may perturb normal microbiota, leading to secondary infections that can complicate the viral disease. The aim of this study was to probe the alteration of nasopharyngeal (NP) microbiota in the context of SARS-CoV-2 infection and obesity and to identify other respiratory pathogens among COVID-19 cases that may affect patients' health. METHODS: A total of 107 NP swabs, including 22 from control subjects and 85 from COVID-19 patients, were processed for 6S amplicon sequencing. The respiratory pathogens causing secondary infections were identified by RT-PCR assay, using a kit that contained specific primers and probes combinations to amplify 33 known respiratory pathogens. RESULTS: No significant (p > 0.05) difference was observed in the alpha and beta diversity analysis, but specific taxa differed significantly between the control and COVID-19 patient groups. Genera of Sphingomonas, Kurthia, Microbacterium, Methylobacterium, Brevibacillus, Bacillus, Acinetobacter, Lactococcus, and Haemophilus was significantly abundant (p < 0.05) in COVID-19 patients compared with a healthy control group. Staphylococcus was found in relatively high abundance (35.7 %) in the COVID-19 patient groups, mainly those treated with antibiotics. A relatively high percentage of Streptococcus was detected in COVID-19 patient groups with obesity or other comorbidities. Respiratory pathogens, including Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Salmonella species, along with Pneumocystis jirovecii fungal species were detected by RT-PCR mainly in the COVID-19 patients. Klebsiella pneumoniae was commonly found in most of the samples from the control and COVID-19 patients. Four COVID-19 patients had viral coinfections with human adenovirus, human rhinovirus, enterovirus, and human parainfluenza virus 1. CONCLUSIONS: Overall, no substantial difference was observed in the predominant NP bacterial community, but specific taxa were significantly changed between the healthy control and COVID-19 patients. Comparatively, an increased number of respiratory pathogens were identified in COVID-19 patients, and NP colonization by K. pneumoniae was probably occurring in the local population.


Subject(s)
COVID-19 , Coinfection , Microbiota , Respiratory Tract Infections , Humans , Saudi Arabia/epidemiology , SARS-CoV-2 , Nasopharynx , Klebsiella pneumoniae , Obesity , Respiratory Tract Infections/epidemiology
4.
J Infect Public Health ; 15(1): 142-151, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1525853

ABSTRACT

BACKGROUND: The rapid increase in coronavirus disease 2019 (COVID-19) cases during the subsequent waves in Saudi Arabia and other countries prompted the Saudi Critical Care Society (SCCS) to put together a panel of experts to issue evidence-based recommendations for the management of COVID-19 in the intensive care unit (ICU). METHODS: The SCCS COVID-19 panel included 51 experts with expertise in critical care, respirology, infectious disease, epidemiology, emergency medicine, clinical pharmacy, nursing, respiratory therapy, methodology, and health policy. All members completed an electronic conflict of interest disclosure form. The panel addressed 9 questions that are related to the therapy of COVID-19 in the ICU. We identified relevant systematic reviews and clinical trials, then used the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach as well as the evidence-to-decision framework (EtD) to assess the quality of evidence and generate recommendations. RESULTS: The SCCS COVID-19 panel issued 12 recommendations on pharmacotherapeutic interventions (immunomodulators, antiviral agents, and anticoagulants) for severe and critical COVID-19, of which 3 were strong recommendations and 9 were weak recommendations. CONCLUSION: The SCCS COVID-19 panel used the GRADE approach to formulate recommendations on therapy for COVID-19 in the ICU. The EtD framework allows adaptation of these recommendations in different contexts. The SCCS guideline committee will update recommendations as new evidence becomes available.


Subject(s)
COVID-19 , Critical Care , Humans , Intensive Care Units , SARS-CoV-2 , Saudi Arabia
5.
J Infect Public Health ; 14(4): 521-526, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1051779

ABSTRACT

The global transmission of SARS-COV-2 constitutes a highly challenging situation for long-term care facilities, especially with the lack of standardized and approved procedures. Residents in these facilities are at high risk for contamination due to proximity, and to morbidity and mortality given their advanced age and critical baseline health conditions. This paper exposes the experience and outcomes of a COVID-19 outbreak in a long-term facility in Jeddah, Saudi Arabia, which occurred after admission of a new resident despite high baseline level of alertness including systematic isolation and screening of all newly admitted residents. We highlight the challenges for case detection and application of protective measures, and describe the adaptive management strategies implemented to contain the outbreak.


Subject(s)
COVID-19/prevention & control , Disease Outbreaks/prevention & control , Infection Control , Nursing Homes , Humans , Long-Term Care , Saudi Arabia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL